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ABSTRACT

Photoemission has been studied for nearly 100 years as both a mesns of investigating
quantum physics, and as a practical technique for transducing optical/x-ray photons.into

electrical currents.

Numerous x-ray detection schemes, such as streak cameras and x-ray

sensitive dicdes, exploit this process because of its simplicity, adaptabllity, end speed.
Recent emphasis on diagnostics for low tempersture, high density, and short-lived, plasmas tor
inertisl confinement fusion has stimulated interest in x-ray photoemission in the sub-kilovolt

regime,

INTRODUCTION

The subject of this afternoon's sessjon will focus
our sttention on detectors for sub-keV x-ray plasre
diagnostics., 1t is frequently desirable to transform
x=ray emissior into an electricsel current for subse-
quent recardirg anc the photselectric effect {s »
useful mechan.sr for trensducing electromagnetic radia-
tion intd fren electrons, This pape- is 8 brief review
cf this process as it applies t9 pulsed plasme x=ray
detectors,

The photoelectric process {s conceptuslly simple
33 outlingd schematically in Fig. 1. Redistion
incident on 8 photosensitive surface irteracts with the
cathode via phatoelectric absorption or Compton scat-
tering, creating energetir primary and Auger electrons,
These electrons traverse the raterial cresting low
energy 3econdary electrons, Sorme fraction af the
primary and secondary electrorn: are erjitted fror thre
surface 5! the pratocathode,
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Schematic of the photoelectron emiasion

This emission 'n a complicated function of space,
energy, and time charpcterited by the distribution
N(E..tp.o.e.z). where E. {9 the emitted electroun

energy, Ep is the incident photon energy, O ia the

photon angle of incidence from the photocasthode sure
facs. 4 {a the slartran amianinn anzie relative ta

In this peper, a2 revicw of x-ray photoemission measurements in the 50 eV to 10 keV
x-ray region is given and the experimental techniques sre reviewed,
x=ray photoemission is discussed and compared to experimental maasurements.
of abuslutely calibrated instruments are shown,

A semiempirical model of
Finally, examrles

the photocathode surface, and t {8 time, Photo-
electraons sre extracted by an applied electric field,
£, and can be used directly as the detector signal or
the photocathode return current can be measured,

The photoelectric process has three important
properties which make it useful in low energy x-ray
pul sed plasms detectors,

1, Speed: The intrinsic sreed of the protoo.
electric emission is <10"17s, Transport of
electrons to the surface takes <10"14g and
collection of the emitted current can take
10712 g,

2. Linear{ty: For many metsllic photacathodes
and modest extraction fleld, the process is
linear to tetter than 1% over 15 orders of
magnitude in photsn intensity.

3, Srplicity: The technique {s adaptable t-
many experiments]l geoumetries, is sensitive
sver a troad range of x-rapy energies, and car
be tajilored to specific needs by choice of
meterials,

Because of these festures, photoelectric erission
has fiunc¢ widespresd use in many detector systers,
This paper reviews the status o>f our knowledye of thie
process as it 3;plies to the design, calibratior, and
use of low energy x-rsy dipgnostics, It sterts with ar
histo: jca)l perspective on resesrch irto this process
and then summarizes a mddel of photoerissaion, Tre
mersiving techniques of each major differentiapl elec-
tron distrituti{isn sre descrited and tyrical exreri-
mencal dete I8 presented, Thre long terr Statility of
the photoelectric emisgion process {8 discusned ar~ gt
13 shown how these elementa are applied {n n practical,
absalutaly coelibrated, sub=keV x-ray spectrometer
system,

HISTORICAL PERSFECTIVF

Fhotoelectric emission {8 one thread {n the fatrjc
of mydern physics which {a deeply woven into the
tapestry of quantum electrodynamics., The pkotoelectric
effect har been ohserved, studied, and utilizea for
nearly 100 years with the first descriptions reparted
in 18R7 "1y Hertz, (1) Schuster,(2) ond Arrhe-fus,(?)

During the next 1P yesra, the basic propertiea of
photoemission were discovered:

1, The total emitted current {8 linear with elec.

tromagnetic intensity.

2. ™e highest electron energy incresses linearly
with the exciting photon's energy irrespective
of the incident {ntens.ty.

3. The emisaion is essentinlly instentaneous,

It wes recognized that properties 2 and 1 {n the
1ist sbove are incompatible with Mexwell'n classical
vlectromagnetic theory and this contradiction motiveted
the second of Albert Finstein's three seminal papers
published in Annalen der Phayik in 1908, (4) It waa
entitled "On » Heuristic Viewpaint Concerning the Pro-
ductisn and Trensformetion of Lipht" wnd laid the
sraundwork for rerreaentine nhatana as localized



particles with energy and momentum. During the next 20
years, detailed experimental investigations by
Millikan(5), Compton(6), and others established the
photon as the particle component of the electromagnetic
wave-particle duality,

As interest in the photoelectric effect fell
behind the frontiers of quantum physics, interest
increased in applying this unique process to a broad
range of applications. Many modern detector systems
such as fonication chambers, proportional counters,
photomultiplier tubes, photodiodes, x-ray streak and
framing cameras make use of this effect,

PHOTOEMISSION MODELS

Despite nearlv 100 years of research, we still do
not have a complete theory of photoelectric emission as
it applies to practical detector systems., The mech-
anisms that must be accurately modeled include: 1) the
generation of the primary electron either through
photoelectric absorption or incoherent scattering, 2)
the transpsrt of primary and Auger electrons to the
photocathode surface and their energy loss to second-
srjes, and 3) the generatisn 5f a detectable signal
from these electrans, Of these three steps, the
secondary generation and transport process is hy far
the lepst well-understssd,

The photon interactisn is dominated by phato-
electric abssrption and recent theosreticcl studies by
Prett, et 81,(7) demonstrate that go5d mddels »f photo-
electric cross sections exist sbove ten kilovslts,

More important, for a predictive model of detector
behavior, excellent compilatisns 5f xeray cross sec-
tions are availatle for pll elements at photan enerpgles
stove 100 eV, (E=11) and for selectec elements at ]lower
energies.(12«-12) Thus, {t is passible L> madel the
primery electrsn praduction mechanisr quite pccurately,

Trhe prirery electran transpart and secoandary
generation and transpirt provides a much greater
challenge, A typical electran distritutiarn, dN/dFF

for protoeritted electrons is shown in Fig, 7 as ve-
printed {ror Henke, et Aal, (14> The impsrtant foatures
Of this spectrum are "n> l>ss" peaks for the phats and
Auger electrons, their associated 1s5as taila, and a
large secondary electron emiasisn in o distributisn a
few ¢V wide beliow 10 eV,
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Fig, 2. A typical photsemissian spectrum,

Henke, et al.t14) have propssed » serfempirical
model that accounts for the "ny 10as" peak and provides
shapes >f the secondary elretron distributisn, The
madel has alas been madified to mccount for the ine
ternal electron scattering processes in semiconductors
and {nsulators,.(1%) Thouph ats.lute ; ‘adictions »f
electron yleld or spectra, are nat yet possible, this
model quite mccurately predicta Lhe shape of the aec-
ondary electron distributisn and the photon energy
dependence > the total emitted electran yield,

Once an accurate model or measurement of the elec-
tron distribution at the surface of the photocathode
has heen obtained, the transport of this distributiosn
through the electron-optical detector is usually well
understood. This step establishes the time response -.f
the detector system, For example, the energy width of
the secondary electron distributisn establishes the
maximum time resolution in & streak camera system,

Similarly, the rise time, tr' of a phatodiade

detector is given by the flight-time 5f the electrons
across an gnode-cathode gap spacing, d,(16), For an
anocde-cathode gap voltage, V* tr a d//V. This fune-

tiongl dependence has been verified(17) end the deta is
shown in Fig. 3, With modest accelerating voltepes, ~?
kV, and anade-cethsde gap spacings of the order >f
l-mm, it is possible t> build photodisde detector
systems with sub-100 ps response times,
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PHOTOFRIECT0N PATH

Because ther- §8 na complete theary 5f photo-
erisnion, and pratoemin ion {8 a surfpce phandmenn
which depends critically on surface conditiasn rnd
cortaminants, it {8 necesspry ts perforr extensive
measurement s on indavidual mpterinla and georetries 5f
practical interext, Fncl paremeter in the electran
distribution, FP' F.. C, and ¢, critically affecta

drfferent types 5f detectdr systers,

In the f11lowing subsectiona, a brief descriptin
will be given 57 how n particular parameter affec’
different types o5f disgnastic devices, the teckninu
utilirzed t> measure the parpmeter, Samples of the
avallable doeta will be presented with coamparinsn t)
models when possible,

N> attempt {8 made t5 compile » complete biblispa
raphy 37 the avallable data in the tex* sf this paper,
Rather, it {3 presented in the Arpendix 88 & thoraup?
but nd>* exhaustive list of references on phataemisstan
data shove 10 eV, Tables are ala~ included whick
organize the different typea of dntp by element and
energy.

A, Quantum Ffficiency dN/de

The quantum efficieny, number of electrans emitted
per incident phaton, {8 the moat comroan photaemissian
data and {8 required for mast mbaslutely celibrated
systems,



A quantum efficlency experiment is performed as
shown schematically in Fig., 4. A monochromatic photon
beam is incident on the phstscathode, and the incident
flux and emitted curren> are monitored to derive the
quantum efficiency. The primary beam energy is changed
and the photon energy dependence is determined,
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Fig, 4. Quantum efficiency measurements are perforred
ty comparing the emitted phrtoelectron current t> the
x-ray flux,

Many such measurerents have been macde n 8 wide
varjety >f metallic, semicanductsr, and insulating
surfaces &8 part >f detector develspment progrars sver
the past 5C years. (ur interest in characterizing
x=ray detectors for sutkilovaolt x=-ray messurerents has
required extending thiz data int> the 50 eV t> 1 keV
rrotor energy regime where few measurements have heen
race. Typicel results for phaton energies of 20 eV to
10 keV are shown in Fig, & for phatocathodes o1 pdld,
slurinum, coprer, and nickel, Many references for this
type 5 data are listed ir Tatle 1 2f the Appendix,

Tre best avallatle photoemissisn madels sucr as
Nenke's mocel mentisned st ove, predirt quantur effi-
ciencies, QL, witl an energy depencence;
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where y(tp) 18 tne {ncident radiatisn phatdelectric
cross sectior ard {(Fr) is 8 slowly varying functisn of

phEoton energy reinted t5 the efficiency f eonverting
photy and Auger electrons int> secondaries,

Ty test thie result, QE/(L(F)®F) vs F is plotted
in Fig, ¢t o ca-tn, adluinum, and gold sarjlea, The
resultart curve . 3 the enerpy dependence >f f(F), te
lines drawn throug ' tre date painta of Fap, € are
provided t> guide the eye and d> n>t represent a made,
of f{E),

In general, () {8 a alowly varying functisn of
energy and the (') #F terr accrunts for mast of the tw)
or three osrders 5! mepnitude vartatisn in quantum
efficiency, For g2ld, f(F) does nat vary by move than
20=30% from 20 eV »H 10 keV, A arpil anomaly {8 seen
near 150 eV st the N atosrption feature and again at
1.8 keV ot the M aligsrptian edge, Aluninum shows the
largest absorptiosn odge and large chanjes in f(F) over
the entire rang> o>f energies. The aluminum surface wes
mideled as Al 0y, #nd 1f we use » pure pluminum
surface, the effect {8 even more pronsunced, For the
carban surface, ((E' is spain slowly varying except at
very 15w enerpies pad with s 303 decrease from 100 eV
£ty 1.5 kev,
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copper, and nickel. Quantur efficienry {8 defined pn
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R, Electron Spectrs, dN/dF'

As indicated sbove, the electron sapectrim 8
complicated funetion of electran enerpy, teflecting the



energy 12ss and scattering of the initial electrons
during transpsrt through the bulk material, Such
spectra are the subject of photoelectron spectroscopy
and are a powerful tosl in surface analysis. However,
the electron energy distributiosn is alss an important
element in modeling detect:r time response.

As snown in Fig. 2, the spectrum is primarily a
tw> companent system 2onsisting of the photo aud Auger
electrons and a secaondary electron spectrum pesked at 8
few eV with a rew eV half-width, With this type of
spectrum, a simple retarding-potential spectrometer(18)
can be used to measure the relative primary and second-
ary contributions,

In this measurement, a reverse bias is applied t>
the phatacathode and only electrons above & critical
voltage can escape and contribute tn the "high energy
yield," YH E.° Subtracting the photscathsde quantum

efficiencies measured under farward and reverse bias
conditions praduces the "low energy yleld,” YL £, The

rati> of the 1w t> high energy electrsn yield for g>ld
in the 1 t> 10 KeV phaton energy range is shown in Fig,
7 as reprinted fraom Gaines, et al.(19) This level of
inforratisn is sufficient for mddeling photodiode time
response,
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Figo 7. The rati~ 5f low energy (<67 V) electran
yield, Y. | to hipt enerpy 1200 eV) electron yleld,

Yy g FOr w10 mp e pald £,

For other applirationy, such ma predicting streak
camers time resj anse 8! the [ew ricosecand level, more
detailed secondary electran energy distribution infora
ration 13 required, Such studiea have been underlaken
bty Henke, et 8l .{14) uzing &n electrostatic focuzing
electron spectrometer, A sumple of the datep [or Au
excited by Al K x-rays is reprinted 1o Fig, £, The
s214d Jines shown in this figure are fitr t) Henke'=a
serjemperical nydel of phatosyield and demonstrate that
the chape predictiong are acceptable,

However, this madel predicts an abssiute yield
which {8 a fector >f three t>> small tor the case shown
here, This dccurs because the madel only handles
gecondary electran scottering empirically, The assump.
tion {a made that the secondary alectron distributfisn
shape 18 nly slightly madified by aecondary electron
scactering while the atgrlute numbers Of secondarien ia
increased,

This madel hasx been extended t> insnula.ors and
senmiconduct ars(18) where the presence > a bdnd gap
restricts the phase-space far electron acattering, The
case of insulators is perticularly intereating hescause
small energy lass electran-phonan scatterjing and/or
density of stutes distributions generate structures in
the se~ondery electron energy distribution A guide t>
these and additionel electryn distributisn memsurements
is contained in Tatle 11 of the Appendix.

C. Angular Distributions, d°N/dOd¢

The electron emission process is dependent upsn
both the photon angle of incidence relative ts the
cathoue surface, 0, and on the angle, ¢, at which the
electrons are emitted relative to the cathode surface,
These distributiors are important since angle of
incidence is frequently used to reduce the incident
x-ray flux by going to grazing angle or t> enhance
electron emissian(20).
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Fig. 8. Secondary electran distribution from gold at

105°C in & 3 x 107¢ Torr vacuum. The lower curve is
the distribution as measured by the spectrograph of
Henke(*u4) and the upper curve has been corrected for
the instrument respoanse and {8 the electron distri-
butisn at the photscathode surface, The s21id line i3
a fit t> Henke's semiempirical msdel,

The standard technique for meas:ring quantur
efficiency va photan incidence angle s reportec ty
Ceines and Hansen(1Q), In this exper,ment, a simple
parsmeter such as t>tal yleld or primery t> secondary
electron ratis is monitored as a functisn of phston
angle of incidence, For angles greater than a few
degrees, quantum efficiency decreases as 1/sinC due to
decreased photon depasitisn within a secondary electron
escape depth as reported by both Gaines and Hansen(?™)
and by Ganeev and lzrajlev(d1),

An enhanced "n> 1288" primary phatselectirsn vield
{8 seen far rhoton incidence angles just andve tthe
critical anple for total x-ray reflectisn(?0), TMis
effect {8 due t> {iacreased photsn depreition witrin a
primary phstoelectran escape depth >f the cathade
surface when the phdotans are refracted nearly parallel
t> the photocathoyde surface, This effect will decrease
the time responar of a phdtddisde detector due t2 a
decregse in the electron flight time acrosxs the
ansde-cathade apacing,

The more complicated measurement of electroan
emission versus ¢ {® much less commanly reported,
Henke's madel of secondary yield predicts a lLartertian,
sinC, dependence t> the secondary emission resulting
from {85tropy of the secaondary distributisn belsw the
photocathade surface, This arerption, however, {a nat
velid for 8l)l primary electrons and data fror Fernetafn
and Smith(1R) snd Paird and Fadley(2?) contain such
results,

Angular distributisn photoemissian date ix summe-
rized in Table 111 of the Appendix. It {8 compiled by
element and angle of incidence »r emission,

D._ __Enhanced Photoemission

Studies >f total yield(P3-06) and secoandary
electron distributisn(1l) have indicated that certein
alkali halides, {>dides, and semicondcutors exhitit
enhanced secondary electron emissisn under x-ray
excitation, A comparison of Csl data with Au {8 shown
in Fig. 9. Over most of the energy ranpe from 1 to 10
keV, C8] s8hows an enhanced nhatasmianian hv » fartar af




30. This allows significant latitude in designing
systems with greater low flux sensitivity.
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Fig. 9. A comparisan of quantum efficiency for g>ld
and cesium iddide photocathades,

Tris effect f>r dielectrics can be understyod
qualitatively by nating the {ncreased scattering length
for low energy electrons below the fermi level, This
all>ows electrons t> be collected from deeper withiu the
cathode resulting in higher electrin yield,

This enhancement ddes n>t core without penalty,
hawever. First, the slkali {9dides are deliquescent
and care must be taken t> maintain them in g
water-vapor free environment, We Know thast heat
sealing (sl photocathodes in pleastic bags filled with
dry nitroger and storing them in a dessicator will
induce n> arparent degradatisn in cethode appearance
for as long as six months, lidwever, exposure >f these
cathoydes t5 afir wt 20 t> 268 relative humidity for more
trhan @ few hzurs impairs perfsrmance,

Second, the time respinse 5f these cathsdes may be
less rapic, The emissian process ssems t> have a
slower component at the level >f » few percent of the
main emission which persists for approximately 100
plciseconds{27), Furthermdre, effects caused by large
photyemissive currents and the finite cathode material
resistivity may cause time dependent sensitivity, At
present, these materials show promise &3 useful
rhotoemissive cathodes but care should he taken to
carefully characterize their energy and time responan
until further study answers ssme 5f these sutstanding
cancerns,

An.ther class >f enhanced photaiemissive materials
based upon gallium-arsenide ond gallium-arsenic-
phosphide has been rep:rted by Rerdes et al.(28),

These inaterials show quantum efficiencies of 100 at 2
keV x-ray energy, Of even greater interest, {s the
linear increase 5f quantum efficiency with x-ray
energy, However, these materipln are very sensitive to
vacuum conteminants and are generally used st leas than
10710 tarr, This greatly limits their practical
applicetion,

PHCTOCATHODE AGING EFFECTS

Aging effects similar to> those seen 5n alkell
iodide cathodes are 8l3> present sn any metallic

surface. Photoelectric emission is a surface physics
effect and any change in the surfuce compasitisn or
structure will appear as a change in the secandary
electron yield, Some discussion of long term aging is
svailable in the literature(25,29), but histarically,
most photocathades have been utilized in sealed vacuum
environments where aging effects are minimsl,

Experience at the Los Alamos National Laboratory,
LANL, indicates that with care, photacathodes can be
used for extended perisds of time in the laser fusion
erperimental environment as subkilovalt, x~ray
transducers without large, >15%, changes in system
calibration. Photocathode surface preparatian is
important to achieve this level »f stability, Figure
10 is a long term aging study of micromachined aluminur
cathades, It shows that far this type of surface
quantun efficiency changes of less than 107 are
possible over six months exposure to air, These
cathodes are used in the LANL low energy x-ray
spectrometer at the FELIOS laser facility., They are
used behind replaceable filter windows and ere exposed
t> the laser chamber vacuum >n each shot, Petween
shots, the disdes are housed in a selfcaontained ian
pumped vacuum system, Severdl aging and use studies at
LANL indicate that an sbsslute calibration of better
than *15% can be meintained over four months in the
operatisnal environment,
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Fig. 10, A before and after comparissn of cathade
quantur efficiency for micromachined aluminum, The tw>
calibratisns are Jeparated by six months satorage {n
air,

Less atringent manufacturing and handling
precautions can have » very demaping effect 5n abaslute
photocathide sensitivity ss shown in Fip., 11, This
befsre and after comparison is deacribed in detaj) by
Day, et al.(2%) and includes & sne month use 3n the
LANL GFMINT laser facility during which tine the



cathodes were conintuslly exposed to the target chamber
vacuun,
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Fig, 11, The quantur efficiency >f gdld, slurinum,
cartion, and atraded and unabraded vitreous carbton, The
cathides were stored in air for six months and used in
the LANL GFMINT laser facility between calibrations,

The aging effects far these samples can exceed
tlus or minus a factyr of twd, (bviously, sfgnificant
care rust be taken in handling photocothsdes for
windowless detector applications. The procedure we
tave adopted t> use windowless detectors(?f) is to
establish a repriducible photocathode manufacturing
rrycess and t> replace and recalibrate photaicathsdes
frequently, every few weeks,

APFLICATION?

The primary purpd>se 3 this paper has been t»>
discuss the status of photoelectric emissisn measure-
ments as they aprly t5 subkilovolt x-ray diasgndstics,
The topic af this sectisn wiil te the practicwl sppli-
cation of photoemiasis>n measurements in an shsslutely
calibrated time resadlved x-ray spectrometer for laser
fusion plasme diagnostics,

The detectors are sirple biplanar x-ray sensitiv-
ity photodisdes, XRii's, 1. a seven elemont array
covering the spectral =anpe from PO eV t> D keV with
1ow resalving power, c/AF & 1.0, The detertsr syster's
acronym {8 MULTIFLEX far multiple fast low energy x-ray
detector, XRD's are simple detectors consisting sf an
Xx=ray cathyde sand andde mesh, The photaielectri:
current reaui}inn from x=-rays impinging an the phot o=

PR PR SN

The energy dependent response >f the system is
determined by the energy dependent sensitivity of the
photocathode canvalved with the filter window
transmission. The sensitivity of four typical channels
is shown in Fig, 12,
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Fig. 12, Typical MULTIFLEY response functions.

Channel 3 - bare phutocathade plus three layers of Vi
mesh,

Channel 7 = 70 pg/em? of palyropylene plus three layers
of Ni mesh,

Channel % ~ 7600 & of Alurminum plus three layers »f N
mesh.

Channel 2 - 272 ug/em? Kimf>il pluss 400 & of alurinurm,

The risetime >f the detectdr i3 determined by tte
phatselectron flight time across the an>de-cath>de gap:
while the decay-time is given by the decay~time 5f the
ansde-cathade gap capacitance int> the characteristic
impedance >f the signal line, The detectors we heve
built for MULTIFLEX have & full-width-et-half-mexirur,
FWHY, time respanse >f 75 ps; which is more than ade-
quate t> measure the 1 ns x-ray pulses from C0; laser
plasmas,

The data consists of seven 38cilloscope traces
showing detector currents versus time, all common tirmed
t> 80 ps. These currents are sampled at 100 ps= tire
intervals and used as inputs t> 8 deconvilutisn ¢oads .
This code accepts the abs>lutely calibrated detect >
response curves, the set >f seven detectsr current:,
and jteratively minimizes the difference between tir
most recent spectrum end the observed currents, A
typical time res>lved spectre for a glass microballaon
irradiated oy 8,2 TW of CO, laser light is showr {n
Fig., 13,

SUMMARY

The MULTIFLFY system {s one >f several detectors
we will hear about in this conference, which utilizes
rhotselectric emission in the detection >f soft
x=-radiation, Phstoselectric emission {8 a corplicated
sratial, energy, angular, and temporally dependent
process and sur empirical and theoretical understanding
18 not sufficient t)> mddel all pstential device pere
formence criteria,

In this paper, the mast impsrtant parameters which
sre uned t> describe photoemiss{on have been discussed
and {t war indicated how they affect detector syster
perfarmance. An dutline »f the mespsurement techniques
has been provided and typical date wes shown {n coma
parison with available madels, The Appendix provides o
guide t> the literpture where the interested render can
g2 for date and details o5f the measurements, FPhoto-
emission studies have plaved a vital role in the devel-
opment of moderr physics and tne deiailed study 5f thia
process will continue to be fmportant in our pulaed
plasma Jdisgnostic instrumentation,
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APPENDIX

The Appendix consists of four major components: 1)
@ master list of most references on photoemission data
above 10 eV in aphabetical order by author; 2) a table
of avezilalbe quantum efficiency data listed by element
or compsund and incident photon energy; 3) a table of
electron energy distribution data by element and 4)
table of electron and phaoton angular distribution data
by element and angle of incidence or emission.

In the tables the reference numbers refer to the
master reference list. In Tables I and II, the numbers
in parenthesis following the reference number refer t>
the exciting photon energy in eV unless the phaton
energy is marked in other units. In Table I, a "P"
following the reference number indicates a measurement
of primary photselectron quantum efficiency, and in
Table II, an asterisk, " " preceding a reference number
indicates an unusual bryad-cand x-ray source, In Table
III, the numbers in parenthesis are angles in degress,
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